Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A uniform electric field of strength $\;\overrightarrow{E}\;$ exists in a region . An electron enters a point $A$ with velocity $v$ as shown . It moves through the electric field and reaches at point $B$ . Velocity of particle at $B$ is $2v$ at $30^{\circ}\;$ with x - axis . Then electric field $\;\overrightarrow{E}\;$ is

$(a)\;\large\frac{3 m_{e}v^2}{2ea}\qquad(b)\;-\large\frac{3 m_{e}v^2}{2ea}\qquad(c)\;\large\frac{ m_{e}v^2}{2ea}\qquad(d)\;-\large\frac{ m_{e}v^2}{2ea}$

Can you answer this question?

1 Answer

0 votes
Answer : (b) $\;-\large\frac{3 m_{e}v^2}{2ea}$
Explanation :
Work done on particle in x axis :
Final velocity of particle along x - axis = $\;\sqrt{3} v$
$\bigtriangleup K.E = \;along\;x-axis=\;\large\frac{1}{2}\;m_{e}\;(\sqrt{3}v)^2-\large\frac{1}{2}\;m_{e}\;(0)^2$
Let the $\;\overrightarrow{E}\;$ be = $\;E_{x} \hat{i} + E_{y} \hat{j}$
Work done by electric field along x-axis
$=E_{x} (-e) \times(2a-a)$
$\bigtriangleup K.E \;along \;y - axis =\;\large\frac{1}{2}\;mv^2-\large\frac{1}{2}\;mv^2=0$
$-E_{y} e d =0$
$\overrightarrow{E}=-\large\frac{3m_{e}v^2}{2ea} \;\hat{i}$
answered Feb 12, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App