Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The intensity of an electric field depends on the coordinates x and y as follows $\;\overrightarrow{E}=\large\frac{a\;(x \hat{i} + y \hat{j})}{x^2+y^2}\;$ where a is constants. Find the charge within a sphere of radius R with the centre at the origin

$(a)\;8 \pi \in_{0} a R \qquad(b)\;4 \pi \in_{0} a R \qquad(c)\;2 \pi \in_{0} a R \qquad(d)\; \pi \in_{0} a R $

Can you answer this question?

1 Answer

0 votes
Answer : (b $\;4\pi \in_{0} a R \;$
Explanation :
At any point P(x , y ,z) on the sphere $x^2+y^2+z^2=R^2$
and a unit vector perpendicular to the sphere radially outwards is
$\hat{n} = \large\frac{x}{\sqrt{x^2+y^2+z^2}} \hat{i} + \large\frac{y}{\sqrt{x^2+y^2+z^2}} \hat{j}+ \large\frac{z}{\sqrt{x^2+y^2+z^2}} \hat{k}$
$\hat {n} = \large\frac{x}{R} \hat{i} + \large\frac{y}{R} \hat{j} + \large\frac{z}{R} \hat{k}$
Let us find the electric flux through a small area dS at point P on the sphere
$d \phi_{e} = \overrightarrow{E} . dS \hat {n}$
$=(\large\frac{ax^2}{R(x^2+y^2)}+\large\frac{ay^2}{R(x^2+y^2)})$ dS
$d \phi_{e}=\large\frac{a\;dS}{R}$
$\phi_{e}=\oint\;d \phi_{e} = \large\frac{a}{R} \oint dS =\large\frac{a}{R}\;4 \pi R^2$
$\phi_{e} = 4 \pi a R $
From Gauss's Law
$\large\frac{q_{inc}}{\in_{0}}= \phi_{e}$
$q_{inc}=4 \pi \in_{0} a R$


answered Feb 14, 2014 by yamini.v
edited Aug 16, 2014 by thagee.vedartham

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App