logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Electromagnetic Induction
0 votes

An inductor of inductance $ L = 400\: mH$ and resistors of resistances $R1 = 2\Omega$ and $R2 = 2\Omega$ are connected to a battery of $emf\: 12V$ as shown in the figure. The internal resistance of the battery is negligible. The switch $K$ is closed at $t= 0$. The potential drop across $L$ as a function of time is

 

$\begin {array} {1 1} (A)\;6e^{-5t}V & \quad (B)\;\bigg( \large\frac{12}{t} \bigg) e^{-3t}V \\ (C)\;6 \bigg(1-e^{\large\frac{-t}{0.2}} \bigg)V & \quad (D)\;12e^{-5t}V \end {array}$

 

Can you answer this question?
 
 

1 Answer

0 votes
$ I_1 = \large\frac{F}{R_1} $ $\large\frac{12}{2}=6A$
$ E=L \large\frac{dI_2}{dt}$ $+ R_2 \times I_2$
$ I_2 = I_0 \bigg ( 1- e^{\large\frac{-t}{t_c}} \bigg) $ $ \Rightarrow I_0 = \large\frac{E}{R_2} $ $ \large\frac{12}{2} $ $ = 6A$
$ t_c =\large\frac{L}{R}$ $ = \large\frac{400 \times 10^{-3}} {2}$ $0.2$
$ I_2 = 6\bigg(1-e^{\large\frac{-t}{0.2}} \bigg)$
Potential drop across $ L =E - R_2I_2 = 12 -2 \times 6 ( 1-e^{-bt}) = 12e^{-5t}$
Ans : (D)
answered Feb 13, 2014 by thanvigandhi_1
edited Mar 14, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...