Browse Questions

# In a YDSE $\lambda =60 \;nm\; D= 2m\;\lambda=6 mm$. Find the positions of a point lying b/w third maxima and third minima where the intensity in three - fourth of maximum intensity on the screen .

$(a)\;5.67\;mm \\ (b)\;4.67\;mm \\ (c)\;6.67 \\ (d)\;3.67\;mm$

Using equation $I= 4I_0 \cos^2 \large\frac{\phi}{2}$
here $I= \large\frac{3}{4} $$(4 I_0) =3I_0 \therefore \cos \large\frac{\phi}{2} =\large\frac{\sqrt 3}{2} Thus \large\frac{\phi}{2}$$=n \pi \pm \large\frac{\pi}{6}$
or $\phi = 2 n \pi +\pm \large\frac{\pi}{3}$
Since$\phi =\large\frac{2 \pi}{\lambda}$$P \therefore \large\frac{2 \pi}{\lambda} \frac{dy_n}{D}$$= 2n\pi \pm \large\frac{n}{3}$
or $y_n = \bigg( n \pm \large\frac{1}{6}\bigg) \large\frac{\lambda}{d}$
For point lying b/w third minima and third maxima,
$n=3$ and $y_3= \bigg(3 -\large\frac{1}{6} \bigg)\frac{\lambda}{d}$
or $y_3= \large\frac{17}{6} \frac{\lambda D}{d}$
Putting $\lambda, p,d$
$y_3=5.67\;mm$
Hence a is the correct answer.

edited Jul 23, 2014