Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If \( y = Ae^{mx} + Be^{nx}\), show that \( \large\frac{d^2y}{dx^2} -\normalsize ( m + n ) \large\frac{dy}{dx} +\normalsize mny = 0 \)

Can you answer this question?

1 Answer

0 votes
  • $y=f(x)$
  • $\large\frac{dy}{dx}$$=f'(x)$
  • $\large\frac{d^2y}{dx^2}=\frac{d}{dx}\big(\frac{dy}{dx}\big)$
  • $\large\frac{d}{dx}$$(e^x)=e^x$
Step 1:
$y=Ae^{\large mx}+Be^{\large nx}$
Differentiating with respect to $x$
$\large\frac{dy}{dx}$$=A.me^{\large mx}+B.ne^{\large nx}$
$\large\frac{d^2y}{dx^2}$$=A.m^2e^{\large mx}+B.n^2e^{\large nx}$
Step 2:
$\Rightarrow A.m^2e^{\large mx}+Bn^2e^{\large nx}-(m+n)(Ame^{\large mx}+Bne^{\large nx})+mn(Ae^{\large mx}+Be^{\large nx})$
$\quad\;=A.m^2e^{\large mx}+Bn^2e^{\large nx}-Am^2e^{\large mx}-Bmne^{\large nx}-Amne^{\large mx}-Bn^2e^{\large nx}+Amne^{\large mx}+Bmne^{\large nx}$
Hence proved.
answered May 13, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App