Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The EMF of cell $Ag/AgCl(K_{sp})(saturated\; sol)\parallel Cl^-(C_1)/AgCl(K_{sp}/Ag)$ is given by

$\begin{array}{1 1}(a)\;E=-\large\frac{0.059}{1}\normalsize\log \large\frac{\sqrt{K_{sp}}}{C_1}\\(b)\;E=-\large\frac{0.059}{1}\normalsize\log \large\frac{C_1}{\sqrt{K_{sp}}}\\(c)\;E=-\large\frac{0.059}{1}\normalsize\log \large\frac{\sqrt{K_{sp}}}{C_1^2}\\(d)\;E=\large\frac{0.059}{1}\normalsize\log \large\frac{C_1}{\sqrt{K_{sp}}}\end{array}$

Can you answer this question?

1 Answer

0 votes
The cell can be reduced to $Ag/AgCl$(saturated solution)$\parallel Ag^+(\large\frac{K_{sp}}{[Cl^-]})$$/Ag$
The reactions occuring at 2 electrodes are
At anode : $Ag\rightarrow Ag^+_A+e^-$
At cathode : $Ag^+_C+e^-\rightarrow Ag$
Net reaction : $Ag^+_C+e^-\rightarrow Ag^+_A$
$\therefore E_{cell}=E^0_{cell}-0.059\log \large\frac{[Ag_A^+]}{[Ag^+_C]}$
$\Rightarrow 0.059\log \large\frac{[Ag^+_C]}{[Ag_A^+]}$
Since it is a concentration cell for which $E^0_{cell}=0$
$\therefore E_{cell}=0.059\log \large\frac{K_{sp}}{[Cl^+]\sqrt{K_{sp}}}$
$\Rightarrow -\large\frac{0.059}{1}\normalsize\log \large\frac{C_1}{\sqrt{K_{sp}}}$
Hence (b) is the correct answer.
answered Feb 17, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App