Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

Find $a_{17},\:a_{24}$ if $a_n=4n-3$

$\begin{array}{1 1}a_{17}=65,\:\:a_{24}=93 \\a_{17}=35,\:\:a_{24}=63 \\ a_{17}=25,\:\:a_{24}=93 \\a_{17}=65,\:\:a_{24}=83 \end{array} $

Can you answer this question?

1 Answer

0 votes
Given: General term of a sequence, $a_n=4n-3$
By putting $n=17$ we get the $17^{th}$ term = $a_{17}=4\times 17-3$
Similarly by putting $n=24$ , we get $a_{24}=4\times24-3=96-3=93$
answered Feb 17, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App