Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Two conducting concentric , hollow sphere A and B have radii a and b respectively with A inside B . Their common potentials is V . A is now given some charge such that its potential becomes zero . The potential of B will now be

$(a)\;0\qquad(b)\;V (1-\large\frac{a}{b})\qquad(c)\;\large\frac{V_{a}}{b}\qquad(d)\;\large\frac{V_{b}}{a}$

Can you answer this question?

1 Answer

0 votes
Answer : (b) $\;V (1-\large\frac{a}{b})$
Explanation :
Let the charge on sphere A is $\;q_{A}\;$ charge on sphere B is $\;q_{B}\;$ initially.
Then , $\;V_{A}=\large\frac{k\;q_{A}}{a}+\large\frac{k\;q_{B}}{b}$
and $\;V_{B}=\large\frac{k\;q_{A}}{b}+\large\frac{k\;q_{B}}{b}$
But $\;V_{A}=V_{B}=V \quad\;\large\frac{k\;q_{A}}{a}+\large\frac{k\;q_{B}}{b}=\large\frac{k\;q_{A}}{b}+\large\frac{k\;q_{B}}{b}$
Now let the charge on A becomes q such that ite potential becomes zero
Then $\;V_{A}=\large\frac{k\;q}{a}+\large\frac{k\;q_{B}}{b}=0$
$q=-\large\frac{q_{B a}}{b}$
By $\;\large\frac{k\;q_{B}}{b}=V$
Therfore $\;V_{B}=V\;(1-\large\frac{a}{b})\;.$
answered Feb 18, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App