Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A particle of mass m and charge -Q is constrained to move along the axis of a ring of radius R .The ring carries a uniform charge density $\;+ \lambda\;$ along its length . Initially the particle is in the centre of the ring . Now it is displaced slightly along the axis of ring it's time period of oscillation is

$(a)\;2 \pi\;\sqrt{\large\frac{\in_{0}\;m\;R^2}{\lambda\;Q}}\qquad(b)\;\pi\;\sqrt{\large\frac{2 \in_{0}\;m\;R^2}{\lambda\;Q}}\qquad(c)\;2 \pi\;\sqrt{\large\frac{2 \in_{0}\;m\;R^2}{\lambda\;Q}}\qquad(d)\; 4\pi\;\sqrt{\large\frac{2 \in_{0}\;m\;R^2}{\lambda\;Q}}$

Can you answer this question?

1 Answer

0 votes
Answer : (c) $\;2 \pi\;\sqrt{\large\frac{ 2 \in_{0}\;m\;R^2}{\lambda\;Q}}$
Explanation :
Electric potential on the axis of ring at a distance x is =$\; \large\frac{k\;q}{(x^2+R^2)^{\large\frac{1}{2}}}$
and Electric field on the axis of ring is $\;E_{x}=-\large\frac{\partial V}{\partial x } \hat{i}$
$E_{x}=\large\frac{k\;q\;x}{(x^2+R^2)^{\large\frac{3}{2}}}=\large\frac{\lambda R x}{2 \in_{0} (x^2+R^2)^{\large\frac{3}{2}} }$
Restoring force $F_{res}=-QE_{x}$
$=-\large\frac{Q \lambda R x }{2 \in_{0} (x^2+R^2)^{\large\frac{3}{2}} }$
Since x < < R
$F_{res} \approx -\large\frac{Q \lambda R x }{2 \in_{0} R^3}$
$F_{res}\;\propto \; -x\;.$ Thus the particle perform simple harmonic motion
$a=\large\frac{F_{res}}{m}=-\large\frac{Q \lambda R x}{m R^3 2 \in_{0}}=-w^2 x$
$w=\sqrt{\large\frac{Q \lambda R}{2 \in_{0} m R^3}}$
$T=\large\frac{2 \pi}{w}=2 \pi \sqrt{\large\frac{2 \in_{0} m R^2}{Q \lambda}}$
answered Feb 18, 2014 by yamini.v
edited Aug 22, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App