Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A mass m is to be placed on the rod of length L and pivoted at its centre at a distance x from the left end of the rod so that the system shown in figure remains in equilibrium . Find x (Ignore the force between Q (beaneth q ) and 2q and the force between Q (beneath 2q) and q .

$(a)\;\large\frac{L}{2}\;(1-\large\frac{k\;q\;Q}{m\;g\;h^2})\qquad(b)\;\large\frac{L}{2}\;(1+\large\frac{k\;q\;Q}{m\;g\;h^2})\qquad(c)\;L\;(1-\large\frac{k\;q\;Q}{m\;g\;h^2})\qquad(d)\;\large\frac{L}{2}\;(1+\large\frac{k\;q\;Q}{2 m\;g\;h^2})$

Can you answer this question?

1 Answer

0 votes
Answer : (b)\; $\large\frac{L}{2}\;(1+\large\frac{k\;q\;Q}{m\;g\;h^2})$
Explanation :
F .B . D of rod
Since the system is in equilibrium the torque about the centre O should be zero . Therefore
$\large\frac{k\;q\;Q}{h^2}\;\large\frac{L}{2}-mg(\large\frac{L}{2}-x)-\large\frac{k\;2\;q\;Q\;L}{2 h^2 }=0$
answered Feb 18, 2014 by yamini.v
edited Feb 20, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App