Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A simple pendulum with a bob of mass m=1 kg , charge $5\;mu C \;$ and string length l=1m is given a horizontal velocity u in a uniform electric field $\;E=2\times10^{6} V/m\;$ at its bottom most point as shown in figure . It is given that the speed u is such that the particle leaves the circle at point C . Find approx the speed u in m/s (Take g=10 m/s^2)

$(a)\;\sqrt{26} m/s\qquad(b)\;\sqrt{31} m/s\qquad(c)\;6 m/s\qquad(d)\;zero$

Can you answer this question?

1 Answer

0 votes
Answer : (b) $\;\sqrt{31} m/s$
Explanation :
Let the speed of the particle at C = v
Then ,
Centripetal force =$\;mg cos 30^{0}-qE cos 60^{0} $
$=\large\frac{10 \sqrt{3}}{2}-\large\frac{10}{2}=5\;\sqrt{3}-5$
and $\;F_{C}=\large\frac{mV^2}{l}=5 sqrt{5}-5$
$V^2=5 \sqrt{3} -5---(1)$
By energy conseration :
$\bigtriangleup K.E=\large\frac{1}{2}\;mV^2-\large\frac{1}{2}\;mu^2$
Work done by gravity = $\;-mgl \;(1+sin \theta)_{| \theta=60^{0}}$
Work done by electric field =$\;qEl cos \theta$
Work done by all force = $\;\bigtriangleup K.E$
$-mgl\;(1+sin 60^{0})+qEl cos 60^{0}=\large\frac{1}{2} mV^2-\large\frac{1}{2} mu^2$
$V^2-u^2=2\;(-5-5 \sqrt{3})$
$u^2=V^2+(5+5 \sqrt{3})\;2$
$u^2=5 sqrt{3}-5+10+10 \sqrt{3}$
$u^2=5\;(1+3 \sqrt{3})$
$u^2 \approx 31$
answered Feb 18, 2014 by yamini.v
edited Feb 18, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App