$\begin{array}{1 1}(A)\;\bigg(\frac{9}{10}\bigg)^5\quad(B)\;\frac{1}{2}\bigg(\frac{9}{10}\bigg)^4\quad (C)\;\frac{1}{2}\bigg(\frac{9}{10}\bigg)^5\quad(D)\;\bigg(\frac{9}{10}\bigg)^5+\frac{1}{2}\bigg(\frac{9}{10}\bigg)^4\end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

- A random variable $X$ following Bianomial distribution with parameters $n$ and $p$ its probability distribution is given by probability of $ r$ success
- $p(X=r)=c_{r}^{n} p^{r}q^{n-r}$
- Where $p$ is probability of success
- $q=1-p$ and $ r=0,1,2,\dots,n$

In a sample of $100$ pens $10$ are defective.

$p$(defective pen)$=p=\large\frac{10}{100}=\frac{1}{10}$

$q=1-p=1-\large\frac{1}{10}=\frac{9}{10}$

There is sample of $5$ pens so $n=5$

$p$(Atmost one defective)$=p(X\leq 1)$

$p(X\leq 1)=p(X=0)+p(X=1)$

=$\large c^{5}_{0}\left(\frac{9}{10}\right)^{0} \left(\frac{9}{10}^{5}\right)+ c^{5}_{1}\left(\frac{1}{10}\right)^{1} \left(\frac{9}{10}^{4}\right)$

=$\large\left(\frac{9}{10}\right)^{5}+\frac{1}{2}\left(\frac{9}{10}\right)^{4}$

$D$ option is correct

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...