Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Probability

A box has 100 pens of which 10 are defective.What is the probability that out of sample of 5 pens drawn one by one with replacement at most one is defective?

$\begin{array}{1 1}(A)\;\bigg(\frac{9}{10}\bigg)^5\quad(B)\;\frac{1}{2}\bigg(\frac{9}{10}\bigg)^4\quad (C)\;\frac{1}{2}\bigg(\frac{9}{10}\bigg)^5\quad(D)\;\bigg(\frac{9}{10}\bigg)^5+\frac{1}{2}\bigg(\frac{9}{10}\bigg)^4\end{array} $

1 Answer

  • A random variable $X$ following Bianomial distribution with parameters $n$ and $p$ its probability distribution is given by probability of $ r$ success
  • $p(X=r)=c_{r}^{n} p^{r}q^{n-r}$
  • Where $p$ is probability of success
  • $q=1-p$ and $ r=0,1,2,\dots,n$
In a sample of $100$ pens $10$ are defective.
$p$(defective pen)$=p=\large\frac{10}{100}=\frac{1}{10}$
There is sample of $5$ pens so $n=5$
$p$(Atmost one defective)$=p(X\leq 1)$
$p(X\leq 1)=p(X=0)+p(X=1)$
=$\large c^{5}_{0}\left(\frac{9}{10}\right)^{0} \left(\frac{9}{10}^{5}\right)+ c^{5}_{1}\left(\frac{1}{10}\right)^{1} \left(\frac{9}{10}^{4}\right)$
$D$ option is correct


answered Jun 11, 2013 by poojasapani_1
edited Jun 11, 2013 by balaji.thirumalai

Related questions