Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The magnitude of electric filed as a function of the distance r inside the sphere is given by


Can you answer this question?

1 Answer

0 votes
  • A sphere of charge of radius R carries a positive charge whose volume charge density depends only on the distance r from the ball's centre as $\;\rho=\rho_{0}\;(1-\large\frac{r}{R})\;.$Where $\rho_{0}\;$ is a constant .
Answer : (a) $\;\large\frac{\rho_{0}}{\in_{0}}\;[\large\frac{r}{3}-\large\frac{r^2}{4R}]$
Explanation :
Due to symmetry , if electric field exists then it will be radial
Let the electric field inside the sphere at a distance r from the centre is $\;E_{r}$
Then flux through a shell of radius r is :
By Gauss 's law
$E_{r}\;.4 \pi r^2=\phi$
$\phi=E_{r} 4 \pi r^2$
$E_{r} 4 \pi r^2=\large\frac{q_{inc}}{\in_{0}}---(1)$
$q_{inc}\;$= charge enclosed in the shell of radius r
$q_{inc}= \int \; \rho dV$
Consider a shell of radius r and thichness dr
$q_{inc}= \int _{0}^{r}\;\rho_{0}\;(1-\large\frac{r}{\rho})\;4 \pi r^2 dr$
$q_{inc}=4 \pi \rho_{0}\; \int_{0}^{r}\;(r^2-\large\frac{r^3}{R}) dr$
$=4 \pi \rho_{0} \;(\large\frac{r^3}{3}-\large\frac{r^4}{4R})$
Putting the value of $\;q_{inc}\;$ in equation (1) we get
$E_{r} 4 \pi r^2=\large\frac{4 \pi \rho_{0}}{\in_{0}}\;(\large\frac{r^3}{3}-\large\frac{r^4}{4R})$
answered Feb 18, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App