Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The maximum electric field intensity inside a sphere of radiusR is

$(a)\;\large\frac{\rho_{0} R}{9 \in_{0}}\qquad(b)\;\large\frac{\rho_{0} R}{12 \in_{0}}\qquad(c)\;\large\frac{\rho_{0} R}{3 \in_{0}}\qquad(d)\;\large\frac{\rho_{0} R}{6 \in_{0}}$

Can you answer this question?

1 Answer

0 votes
Answer : (a) $\;\large\frac{\rho_{0} R}{9 \in_{0}}$
Explanation :
Outside the ball electric field = $\;\large\frac{\rho_{0} R^3}{12 R^2 \in_{0}}$
It will be maximum when $r=R$
Then ,
$E_{r}=\large\frac{\rho R^3}{12 R^2 \in_{0}}=\large\frac{\rho_{0} R}{12 \in_{0}}$
Inside the ball $\;E_{r}=\large\frac{\rho_{0}}{\in_{0}}\;[\large\frac{r}{3}-\large\frac{r^2}{4R}]$
For $\;E_{r}\;$ to be max
$\large\frac{d E_{r}}{dr}=0$
$\large\frac{d^2 E_{r}}{dr^2}=-\large\frac{\rho_{0}}{2 \in_{0} R} < 0$
Hence at $\;r=\large\frac{2R}{3}\;E_{r}\;$ is maximum and is greater than at $\;r=R\;.$
Electric field is max . at $\;r=\large\frac{2R}{3}$
At $\;r=\large\frac{2R}{3}\; \quad \; E_{r}=\large\frac{\rho_{0}}{\in_{0}}\;[\large\frac{r}{3}-\large\frac{r^2}{4R}]$
$=\large\frac{\rho_{0} R}{\in_{0}}\;[\large\frac{2}{9}-\large\frac{1}{9}]$
$E_{r}|_{max} = \large\frac{\rho_{0} R}{9 \in_{0}}\;.$


answered Feb 18, 2014 by yamini.v
edited Aug 21, 2014 by thagee.vedartham

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App