Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A glass sphere with radius 10 cm has concentric spherical equity of radius 5 cm. A narrow beam of parallel light is directed into sphere, as shown . Find the position of final image from centre of sphere


$(a)\;18.14\;cm \\ (b)\;17.14\;cm \\ (c)\;16.14\;cm \\ (d)\;15.14\;cm $

Can you answer this question?

1 Answer

0 votes
First surface $\mu_2=1.5, \mu_1=1, \mu=-\infty, \rho=+10\;cm$
$\therefore \large\frac{1.5}{v} -\frac{1}{-\infty}=\frac{1}{20} =\frac{1.5 -1}{10}$
or $\large\frac{1.5}{v}=\frac{1}{20} => $$v=30\;cm$
Second surface,
$\mu_2=-1,\mu_1=1.5, u=30.5=25\;cm$
$R= 5 \;cm$
$\therefore \large\frac{1}{v}-\frac{1.5}{2.5}=\frac{1-1.5}{5}$
or $\large\frac{1}{v}-\frac{3}{50}=\frac{-1}{10}$$=>v= -25\;cm$
Third surface,
$\mu_3=1.5,\mu_1=1, u=-25-10=-35\;cm$
$R=- 5 \;cm$
$\therefore \large\frac{1.5}{v}-\frac{1}{-35}=\frac{0.15-1}{-5}$
or $\large\frac{1.5}{v}+\frac{1}{35}=\frac{-1}{10}$$=>v= -\large\frac{35}{3}$
Fourth surface,
$u= -\large\frac{35}{3}-5 =\large\frac{-50}{3}$
$\mu_2=1,\mu_1=1.5, u= 9-4=5\;cm$
$R= -10\;cm$
$\therefore \large\frac{1}{v}+\frac{(1.5)3}{50}=\frac{1-1.5}{-10}$
The final position is $10+7.14=17.14\;cm$ (towards right)
Hence b is the correct answer
answered Feb 19, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App