Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Wave Optics
0 votes

In YDSE $\large\frac{d}{D}$$=10^4$ (d= distance between slits ; D= distance of screen from slits). at a point P on screen resulting intensity is equal to intensity due to individual slit $I_0$ Then the distance of point P from central maximum is $(\lambda= 6000 A^{\circ})$

$(a)\;2 \;mm \\ (b)\;0.5\;mm \\ (c)\;1\;mm \\ (d)\;4\;mm $

Can you answer this question?

1 Answer

0 votes
$I= 4I_0 \cos ^{2} \bigg( \large\frac{\phi}{2} \bigg)$
$I_0 =4 I_0 \cos ^2 \bigg( \large\frac{\phi}{2} \bigg)$
$\therefore \cos \bigg(\large\frac{\phi}{2} \bigg)=\large\frac{1}{2}$
or $\large\frac{\phi}{2}=\frac{\pi}{3}$
or $\phi =\large\frac{2 \pi}{3}= \bigg( \large\frac{2 \pi}{\lambda}\bigg).$$ \Delta x$
or $\large\frac{1}{3} =\bigg( \large\frac{1}{\lambda}\bigg) .y. \large\frac{d}{D}$
$( \Delta x =y. \large\frac{d}{D}\bigg)$
$\therefore y= \large\frac{\lambda}{3 \times \Large\frac{d}{D} } $
$\qquad=\large\frac{ 6 \times 10^{-7}}{3 \times 10^{-4}}$
$\qquad= 2 \times 10^{-3} m$
$\qquad= 2 \;mm$
Hence a is the correct answer.
answered Feb 19, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App