Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Which of the options represents Biot – Savart’s Law for a point charge particle Q moving with velocity $ \overrightarrow V$ ?

$\begin {array} {1 1} (a)\;\large\frac{\mu_o}{4 \pi} Q\large\frac{\overrightarrow V \times \hat r}{r^3} & \quad (b)\;\large\frac{\mu}{4 \pi} Q\large\frac{\overrightarrow V \times \hat r}{r^2} \\ (c)\;\large\frac{\mu_o}{4 \pi} Q\large\frac{\overrightarrow V \times \{\hat r \times ( \overrightarrow V \times \hat r) \}}{r^2} & \quad (d)\;\large\frac{\mu_o}{4 \pi} Q\large\frac{\overrightarrow V \times \overrightarrow r}{r^3} \end {array}$


Can you answer this question?

1 Answer

0 votes
In the case of a point charged particle $Q$ moving at a constant velocity $V$, Maxwell's equations give the following expression for the electric field and magnetic field:
$E = \large\frac{Q}{4\pi\varepsilon_0}$$\large\frac{1-\frac{v^2}{c^2}}{(1-v^2 \frac{\sin^2\theta}{c^2})^{3/2}}$$\large\frac{\hat r}{r^2}$, where $\hat r$ is the vector pointing from the current position of the particle to the point at which the field is being measured, and $\theta$ is the angle between $V$ and $r$.
$B = \overrightarrow V \times \large\frac{1}{c^2}$$E$
$\Rightarrow E = \large\frac{Q}{4\pi\varepsilon_0}$$\large\frac{\hat r}{r^2}$$ \rightarrow B = \large\frac{\mu_o}{4 \pi} $$Q\large\frac{\overrightarrow V \times \hat r}{r^2}$
answered Feb 19, 2014 by thanvigandhi_1
edited Mar 14, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App