logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Wave Optics
0 votes

In the YDSE apparatus shown the ratio of maximum to minimum intensity on screen is 9. The wavelength of light used is $\lambda$, the value of y is :

$(a)\;\frac{\lambda D}{3d} \\ (b)\;\frac{\lambda D}{d} \\ (c)\;\frac{3 \lambda p}{d} \\ (d)\;\frac{2 \lambda D}{3d} $

Can you answer this question?
 
 

1 Answer

0 votes
$\large\frac{I_{\Large max}}{I_{\Large min}}- \bigg( \large\frac{\sqrt {I_1/I_2}+1}{\sqrt {I_1 /I_2}-1}\bigg)^2=\large\frac{9}{1}$
or $\large\frac{x+1}{x-1} $$=3\quad (x =\sqrt {\large\frac{I_1}{I_2}})$
$\therefore x=2$
$\therefore \large\frac{I_1}{I_2}$$=4$
$I_1=4 I_2$
ie if $I_2=I_0$
then $I_1=4 I_0$
$I_0 =4 f_0 \cos ^2 \large\frac{\phi}{2}$
$\therefore \phi =\large\frac{2 \pi}{3}$
$\therefore \bigg(\large\frac{2 \pi}{\lambda} \bigg) \bigg( y \large\frac{d}{D} \bigg) =\large\frac{2 \pi}{3}$
$\therefore y= \large\frac{\lambda D}{3d}$
Hence a is the correct answer.
answered Feb 19, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...