Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Wave Optics
0 votes

In the YDSE apparatus shown the ratio of maximum to minimum intensity on screen is 9. The wavelength of light used is $\lambda$, the value of y is :

$(a)\;\frac{\lambda D}{3d} \\ (b)\;\frac{\lambda D}{d} \\ (c)\;\frac{3 \lambda p}{d} \\ (d)\;\frac{2 \lambda D}{3d} $

Can you answer this question?

1 Answer

0 votes
$\large\frac{I_{\Large max}}{I_{\Large min}}- \bigg( \large\frac{\sqrt {I_1/I_2}+1}{\sqrt {I_1 /I_2}-1}\bigg)^2=\large\frac{9}{1}$
or $\large\frac{x+1}{x-1} $$=3\quad (x =\sqrt {\large\frac{I_1}{I_2}})$
$\therefore x=2$
$\therefore \large\frac{I_1}{I_2}$$=4$
$I_1=4 I_2$
ie if $I_2=I_0$
then $I_1=4 I_0$
$I_0 =4 f_0 \cos ^2 \large\frac{\phi}{2}$
$\therefore \phi =\large\frac{2 \pi}{3}$
$\therefore \bigg(\large\frac{2 \pi}{\lambda} \bigg) \bigg( y \large\frac{d}{D} \bigg) =\large\frac{2 \pi}{3}$
$\therefore y= \large\frac{\lambda D}{3d}$
Hence a is the correct answer.
answered Feb 19, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App