Ask Questions, Get Answers


Two particles $ X$ and $Y$ equal charges enter a region of uniform magnetic field after being accelerated through the same potential difference and describe circular paths of radii $R_X$ and $R_Y$ respectively. The ratio of their masses is

$\begin {array} {1 1} (a)\;\large\frac{R_X}{R_Y} & \quad (b)\;\bigg( \large\frac{R_X}{R_Y}\bigg)^2 \\ (c)\;\large\frac{R_Y}{R_X} & \quad (d)\;\bigg( \large\frac{R_X}{R_Y}\bigg)^{\large\frac{1}{2}} \end {array}$


Download clay6 mobile app

1 Answer

$ R = \large\frac {mv}{qB} $$ = \large\frac{m}{qB} \sqrt \frac{2Vq}{m} = \large\frac{1}{B} \sqrt \frac{2Vm}{q} $$ \;\propto \sqrt m$
$\therefore \large\frac{R_X}{R_Y} $$ = \large\sqrt \frac{m_X}{m_Y} $$\rightarrow \large\frac{m_X}{m_Y} $$ = \large(\frac{R_X}{R_Y})^2$
answered Feb 19, 2014 by thanvigandhi_1
edited Mar 14, 2014 by balaji.thirumalai

Related questions