Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Wave Optics
0 votes

In YDSE if the source consists of two wave lengths $\lambda_1=4000 \;a^{\circ}$ and $\lambda _2 =4002\;A^{\circ}$ . Find the distance from centre where fringes disappear if $d= 1\;cm; D=1\;m$

$(a)\;20\;mm \\ (b)\;40\;mm \\ (c)\;60\;mm \\ (d)\;80\;mm $

Can you answer this question?

1 Answer

0 votes
The fringes disappear when the maxima of $ \lambda_1$ fall over minima of $\lambda_2$.
$\large\frac{p}{\lambda_1}-\frac{p}{\lambda_2} =\frac{1}{2}$
Where p is the optical path difference at that point.
or $p=\large\frac{\lambda_1 \lambda_2}{2( \lambda_2 - \lambda_1)}$
Here $\lambda_1=4000\;A^{\circ}, \lambda_2= 4002 A^{\circ}$
$\therefore p=0.04\;cm$
$p= \large\frac{d y}{D}$
$\therefore y= \large\frac{D}{d}$$p$
$\qquad= \large\frac{(1000)}{10}$$(0.4) =40\;mm$
Hence b is the correct answer.
answered Feb 20, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App