Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Wave Optics
0 votes

In YDSE intensity at a point is $\bigg (\large\frac{1}{4} \bigg) $ of maximum intensity. Angular position of this point is :

$(a)\;\sin ^{-1} \bigg( \frac{\lambda}{d}\bigg) \\ (b)\;\sin ^{-1} \bigg( \frac{\lambda}{3d}\bigg) \\ (c)\;\sin ^{-1} \bigg( \frac{\lambda}{2d}\bigg) \\ (d)\;\sin ^{-1} \bigg( \frac{\lambda}{4d}\bigg)$

Can you answer this question?

1 Answer

0 votes
$I= I_{max} \cos ^2 \bigg(\large\frac{\phi}{2}\bigg)$
$\therefore \large\frac{I_{max}}{4}$$ =I_{max} \cos ^2 \large\frac{\phi}{2}$
$\cos \large\frac{\phi}{2} =\frac{1}{2}$
or $ \large \frac {\phi}{2}= \frac{\pi}{3}$
$\therefore \phi = \large\frac{2 \pi}{3}$
$\qquad = \bigg( \large\frac{2 \pi}{\lambda}\bigg)$$.\Delta x$
Where $\Delta x =d \sin \theta$
Substituting in equation we get,
$\sin \theta= \large\frac{\lambda}{3d}$
or $\theta= \sin ^{-1} \bigg( \large\frac{\lambda}{3 d}\bigg)$
Hence b is the correct answer.
answered Feb 20, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App