Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

How many terms of the A.P. $-6,-\large\frac{11}{2}$$, -5........$ are needed to give the sum $-25$

$\begin{array}{1 1}20\;or\;5 \\ 25\;or \;4 \\ 21 \\ 24 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Sum of $n$ terms of an A.P.$=S_n=\large\frac{n}{2}$$[2a+(n-1)d]$
Given $A.P.$ is $-6,-\large\frac{11}{2}$$,-5........$
In this A.P, Common difference $d=-\large\frac{11}{2}$$-(-6)=\large\frac{1}{2}$
First term $a=-6$
Let the number of terms of the series be $n$
Also given that the sum of $n$ terms of the series$=-25$
We know that $S_n=\large\frac{n}{2}$$[2a+(n-1)d]$
$\Rightarrow\:-25=\large\frac{n}{2}$$[2\times (-6)+(n-1)\large\frac{1}{2}]$
answered Feb 20, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App