$\begin{array}{1 1} \frac{\pi}{6} \\ \frac{\pi}{3} \\ \frac{\pi}{4} \\ \frac{\pi}{2} \end{array} $

- If $ y = f(x)$, then $ \large\frac{dy}{dx}$ measures the rate of change of $y$ w.r.t $ x $.
- $ \bigg(\large \frac{dy}{dx} \bigg)_{x=x_0}$ represents the rate of change of $y$ w.r.t $x$ at $x=x_0$

Step 1

Let $ x = \sin\: \theta$

On differentiating w.r.t $t$ we get,

$ \large\frac{dx}{dt}$$=\cos\theta\large\frac{d\theta}{dt}$

But it is given that $ \large\frac{d\theta}{dt}$$=2.\large\frac{dx}{dt}$

$ \Rightarrow \large\frac{dx}{dt}$$=\cos\theta.2\large\frac{dx}{dt}$

$\Rightarrow \cos\theta=\large\frac{1}{2}$

$ \Rightarrow \theta = \large\frac{\pi}{3}$

Hence the angle is $ \large\frac{\pi}{3}$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...