$\begin {array} {1 1} (a)\;r_{\alpha} = r_p < r_d & \quad (b)\;r_{\alpha} = r_d < r_p \\ (c)\;r_{\alpha} = r_p = r_d & \quad (d)\;r_{\alpha} < r_p < r_d \end {array}$

$\begin{align*}r = \frac{mV}{qB} \end{align*}$

$mp = 1; \; \; \; qp = 1$

$md = 2; \; \; \; qd =1 $

$m_2 = 4; \; \; \; q_2 = 2$

$\begin{align*} \therefore r_p = \frac{1m \times V}{1q \times B}; \; \; \; r_d = \frac{2m \times V}{1q \times B} \end{align*}$

$\begin{align*}r_{\alpha} = \frac{4m \times V}{2q \times B} \end{align*}$

$\begin{align*}K.E_p = \frac{1}{2} m \times v^2 \;\; \implies v = \sqrt{\frac{2 K E}{m} } \end{align*}$

$\begin{align*}K.E_{\alpha} = \frac{1}{2} \times 2m \times v^2 \implies v = \sqrt{\frac{K.E}{m}}\end{align*}$

$\begin{align*}K.E_{\alpha} = \frac{1}{2} \times 4m \times v^2 \implies v = \sqrt{\frac{K.E}{2m}}\end{align*}$

Now substituting the values in $r_p$, $r_d$ and $r_{\alpha}$ we get,

$r_{\alpha} = r_p < r_d$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...