$(a)\;7.2 min\qquad(b)\;6.13 min\qquad(c)\;5.24 min\qquad(d)\;8.3 min$

Answer : 6.13 min

Explanation :

According to decay equation

$\lambda t =ln(\large\frac{N_{0}}{N}) \qquad or \qquad \lambda=\large\frac{1}{t}\;ln(\large\frac{N_{0}}{N})$

$or\; \lambda=\large\frac{1}{t} \times2.303 \qquad ln(\large\frac{N_{0}}{N})-----(1)$

$Now \; \large\frac{d N_{0}}{dt}=\lambda N_{0}\; \quad and \; \large\frac{dN}{dt}=\lambda N$

Hence $\; \large\frac{N_{0}}{N}=\large\frac{\large\frac{dN_{0}}{dt}}{\large\frac{dN}{dt}}=\large\frac{4750}{2700}=1.76-----(2)$

From eq (1) & (2)

$\lambda=(\large\frac{1}{t})\times2.303\times ln(1.76)$

$=(\large\frac{1}{5} minutes)\times2.303\times ln(1.76)$

$=0.113 /minute$

$T=\large\frac{0.693}{\lambda}=\large\frac{0.693}{0.113}=6.13minutes$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...