Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

The activity of a radiooctine sample is measured as 4750 counts/min at $\;t=0\;$ and as 2700 counts/min at $\;t=5$ minutes . Calculate Lay life of sample

$(a)\;7.2 min\qquad(b)\;6.13 min\qquad(c)\;5.24 min\qquad(d)\;8.3 min$

Can you answer this question?

1 Answer

0 votes
Answer : 6.13 min
Explanation :
According to decay equation
$\lambda t =ln(\large\frac{N_{0}}{N}) \qquad or \qquad \lambda=\large\frac{1}{t}\;ln(\large\frac{N_{0}}{N})$
$or\; \lambda=\large\frac{1}{t} \times2.303 \qquad ln(\large\frac{N_{0}}{N})-----(1)$
$Now \; \large\frac{d N_{0}}{dt}=\lambda N_{0}\; \quad and \; \large\frac{dN}{dt}=\lambda N$
Hence $\; \large\frac{N_{0}}{N}=\large\frac{\large\frac{dN_{0}}{dt}}{\large\frac{dN}{dt}}=\large\frac{4750}{2700}=1.76-----(2)$
From eq (1) & (2)
$\lambda=(\large\frac{1}{t})\times2.303\times ln(1.76)$
$=(\large\frac{1}{5} minutes)\times2.303\times ln(1.76)$
$=0.113 /minute$
answered Feb 24, 2014 by yamini.v
edited Feb 24, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App