Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

It is proposed to use nuclear fusion reaction : $\; _{1}H^{2}+_{1}H^{2}=\;_{2}He^{4}\;$ in a nuclear reactor of 200MW rating . If energy from above reaction is used with a $\;25 \%\;$ efficiency in reactor how many gr ams of deuterium will be needed per day . (The masses of $\;_{1}H^{2}\;$ and $\;_{2}He^{4}\;$ are 2.0141 & 4.0026 amu respectively

$(a)\;121 gm/day\qquad(b)\;112 gm/day\qquad(c)\;128 gm/day\qquad(d)\;100 gm/day$

Can you answer this question?

1 Answer

0 votes
Answer : (a) $\;121 gm/day$
Explanation :
Let us first calculate Q value of nuclear function
$Q=\bigtriangleup mC^2=\bigtriangleup m\;(931) MeV$
Now efficiency of reactor is $\;25 \%$
$=\large\frac{25}{100}\times23.834\times10^{6}\times1.6\times10^{-19} J$
$=9.534 \times10^{-13} J$
Now $\;9.534\times10^{-13} J\;$ energy is released by fusion of 2 deuterium
$\large\frac{9.534\times10^{-13}}{2} J/deuterium\;$ is released Requirement is $\;200MW=200 \times10^{6} J/s\times86400\;$ for 1 day
no . of deuterium nuclei required = $\;\large\frac{200\times10^{6}\times86400}{\large\frac{9.534}{2}\times10^{-13}}$
No.of deucterium nuclei
$g=2\times\large\frac{3.624\times10^{25}}{6\times10^{23}}=120.83 gm/day\;.$
answered Feb 24, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App