Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

Radio isotopes of phosphorous $\;P^{32}\;$ and $\;P^{35}\;$ are mixed in ratio of 2:1 of atoms .The activity of samples 2 $\;\mu Ci\;$.Find activity of sample after 30 days. $\;t_{\large\frac{1}{2}}\;$ of $\;P^{32}=14\;$days and $\;t_{\large\frac{1}{2}}\;$ of $\;P^{33}\;$ is 25 days.

$(a)\;0.54 Ci\qquad(b)\;3.2 Ci \qquad(c)\;1.2 Ci\qquad(d)\;4.8 Ci$

Can you answer this question?

1 Answer

0 votes
Answer : (a) $\;0.54 Ci$
Explanation :
Let $\;A_{0}=$ initial activity of sample
$A_{10}=$initial activity of isotope 1 &
$A_{20}=$ initial activity of isotope 2
Similarly for final activity (Activity after time t)
Now in given equation
$A_{0}=2 \mu Ci \to \;A_{0}=A_{10}+A_{20}---(1)$
Initial ratio of atoms of isotopes = $\;2:1$
We know from definition of activity ,
$A=\lambda N$
$\large\frac{A_{10}}{A_{20}}=\large\frac{\lambda_{1} N_{10}}{\lambda_{2} N_{20}}=\large\frac{N_{10}}{N_{20}}\times\large\frac{T_{2}}{T_{1}}$
Where T represents half life
On solving (1) & (2) we get $\;A_{20}=\large\frac{7}{16}\;$& $\;A_{10}=\large\frac{25}{16}$
$A_{t}=A_{10}e^{-\lambda_{1} t}+A_{20} e^{-\lambda_{2}t}$
Consider $\;1^{st}\;$ exponential term $\;\large\frac{0.693\times3}{14}=e^{-1.483}$
Let $\;y=e^{-1.483}$
$ln y=-1.483\;$
$log\;y=-\large\frac{1.483}{2.303}\;\to y=antilog(-\large\frac{1.483}{2.303})$
So $\;e^{-x} =antilog(-\large\frac{-x}{2.303})$
At $=\large\frac{25}{16}\times0.2265+\large\frac{7}{16}\times0.4353$
$=0.54 Ci$
answered Feb 24, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App