Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Prove that $f(x)=\sin x+\sqrt 3\cos x$ has maximum value at $x=\Large\frac{1}{6}$.

Can you answer this question?

1 Answer

0 votes
  • Let $f(x)$ be a function with domain $D \subset R$. Then $f(x)$ is said to attain the maximum value at a point, $ a \in D,$ if $ f'(x) \leq f(a)$ for all $ x \in D$.
Step 1
$ f(x)= \sin x+ \sqrt 3 \cos x$
differentiating w.r.t $x$ we get,
$ f'(x)= \cos x+ \sqrt 3(-\sin x)$
$ = \cos x-\sqrt 3 \sin x$
at $ x = \large\frac{\pi}{6}$
$ f'(x)= \cos \large\frac{\pi}{6}-\sqrt 3 \times \sin \large\frac{\pi}{6}$
But $ \cos \large\frac{\pi}{6}=\large\frac{\sqrt 3}{2} \: and \: \sin \large\frac{\pi}{6}=\large\frac{1}{2}$
$ \therefore f'(x)=\large\frac{\sqrt 3}{2}-\large\frac{\sqrt 3}{2}=0$
$ f(x)=\sin\large\frac{\pi}{6}+\sqrt 3 \times \cos \large\frac{\pi}{6}$
$ = \large\frac{1}{2}+\large\frac{\sqrt 3}{2}$
$ = \large\frac{\sqrt 3+1}{2}$
Step 2
Again differentiating $f(x)$ w.r.t $x$ we get,
$ f''(x)-\sin x - \sqrt 3 \cos x$
$ f''(x)=-( \sin x+ \sqrt 3 \cos x)$
$ f''(x)=-f(x)$
Since $f''(x)<0,$ the given function is maximum.
Hence the maximum value is $ \large\frac{\sqrt 3+1}{2}$


answered Aug 6, 2013 by thanvigandhi_1
edited Aug 6, 2013 by thanvigandhi_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App