Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

The curve $y=x^\frac{1}{5}$ has at

$\begin{array}{1 1} (A)\;\text{a vertical tangent (parallel to y-axis)}\\(B)\;\text{a horizontal tangent (parallel to x-axis)}\\(C)\;\text{an oblique tangent}\\(D)\;\text{no tangent}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Slope of a line is $ ax+by+c=0$ is $ - \bigg( \large\frac{ Coefficient\: of \: x}{ Coefficient\: of \: y} \bigg)$
  • If $ y = f(x),\: then \: \bigg( \large\frac{dy}{dx} \bigg)_p = $ slope of the tangent to $ y = f(x)$ at point $p$
Step 1
The equation of the curve is
$ y=x^{\large\frac{1}{5}}$
differentiting w.r.t $x$ we get,
$ \large\frac{dy}{dx} = \large\frac{1}{5}x^{\large\frac{-4}{5}}=\large\frac{1}{5x^{\large\frac{4}{5}}}$
The point given is $(0, 0)$
$ \Rightarrow \large\frac{dy}{dx_{(0,0)}}=\large\frac{1}{0}$$=\infty$
The slope of the tangent is $\infty$
$\Rightarrow\:$ The tangent is parallel to $y$ - axis
Hence the correct option is A


answered Aug 8, 2013 by thanvigandhi_1
edited Jan 12, 2014 by rvidyagovindarajan_1
when the slope of tangent is zero, is it not parallel to x-axis
Jitender,  slope of tangent in the above case is not zero, at  (0,0)  but it is 1/0,  which is infinity.  Therefore the tangent is parallel to y-axis.

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App