Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

The ratio of de-Broglie wavelength of moleculus of hydrogen and helium in two gas jars kept separately at temperatures $\;27^{0} C\;$ and $\;127^{0} C\;$ respectively is

$(a)\;\large\frac{2}{\sqrt{3}}\qquad(b)\;2:3 \qquad(c)\;\large\frac{\sqrt{3}}{4}\qquad(d)\;\sqrt{\large\frac{8}{3}}$

Can you answer this question?

1 Answer

0 votes
Answer : (d) $\;\sqrt{\large\frac{8}{3}}$
Explanation :
De-Broglie wavelength $\;\lambda=\large\frac{h}{mV}$
Where speed (r.m.s ) of a gas particle at given Temperature(T) is given as
$V=\sqrt{\large\frac{3KT}{m}}\qquad \; $ where K = Boltzmann's constant and m=mass of gas particle
T=temp of gas in K
$\lambda=\large\frac{h}{mV}=\large\frac{h}{\sqrt{3 m KT}}$
$\large\frac{\lambda_{H}}{\lambda_{He}}=\sqrt{\large\frac{m_{He} T_{He}}{m_{H}T_{H}}}$
$=\sqrt{\large\frac{(4 amu)\;(273+127)^{0}K}{(2 amu)\;(273+27)_{0}K}}$
answered Feb 25, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App