$\begin{array}{1 1} 3072 \\ 6144 \\ 1536 \\ 768 \end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

- $n^{th}$ tem of a $G.P.=t_n=a.r^{n-1}$ where $1^{st}$ term$ =a$ and common ratio$=r$

Given that the $8^{th}$ term of a G.P.=$192$ and common ratio $r=2$

We know that $t_n=a.r^{n-1}$

$\therefore\:t_8=a.r^{8-1}=a.2^7$

$i.e.,192=a.2^7=128a$

$\Rightarrow\:a=\large\frac{192}{128}=\frac{3}{2}$

$\Rightarrow\:t_{12}=a.r^{12-1}=\large\frac{3}{2}$$.2^{11}=3072$

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...