logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

The tangent to the curve $y=e^{2x}$ at the point $(0,1)$ meets x-axis at:

$\begin{array}{1 1}(A)\;(0,1) \\ (B)\;\bigg(\frac{-1}{2}\bigg) \\ (C)\;(2,0) \\ (D)\;(0,2) \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Slope of a line is $ ax+by+c=0$ is $ - \bigg( \large\frac{ Coefficient\: of \: x}{ Coefficient\: of \: y} \bigg)$
  • If $ y = f(x),\: then \: \bigg( \large\frac{dy}{dx} \bigg)_p = $ slope of the normal to $ y = f(x)$ at point $p$
Step 1
$y=e^{2x}$ is the equation of the curve.
On differentiating w.r.t $x$ we get,
$ \large\frac{dy}{dx}=2e^{2x}$
The slope at the point $(0,1)$ is
$ \large\frac{dy}{dx_{(0,1)}}=2.e^{\circ} \: \: \: ( \because e^{\circ}=1)$
$ = 2$
The $y$ coordinate when the slope is 2 and when it meets the $x$ - axis.
$ y=0$
Hence the required point is (2,0)
Hence the correct option is C
answered Aug 11, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...