$(a)\;1.44 MeV\qquad(b)\;2.36 MeV\qquad(c)\;1.92 MeV\qquad(d)\;2.6 MeV$

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

Answer : (a) $\;1.44 MeV$

Explanation :

The nuclear reaction in question can be written as $\;P_{1}^{1}+H_{1}^{3} \to He_{2}^{3}+n_{0}^{1}+Q$

When Q is energy released during reaction given by

$Q=[(m_{P}+m_{H})-(m_{He}+m_{m})]\;amu$

$=(1.0072765+30.16050)-(3.016030-1.008665)$

$=-0.001369 amu=-1.2745 MeV$

The kinetic energy of associated emitted motion is given by

$K_{n}=[u_{n}\pm (U_{n}^{2}+v^2)]---(1)$

where $\;u_{n}=\large\frac{(m_{p} m_{n} K_{p})^{\large\frac{1}{2}}}{m_{He}+m_{n}} cos \theta$

$u_{n}=\large\frac{(1.007276\times1.008665\times3)^{\large\frac{1}{2}}}{3.016030+1.008665}\times\large\frac{\sqrt{3}}{2}$

$u_{n} \approx =0.3753$

and $\;V=\large\frac{m_{He}Q+K_{p}(m_{He}-m_{p})}{m_{He}+m_{n}}$

$V \approx 0.5424 $

$K_{n}=[0.3753\pm 0.8266]$

$K_{n}=(1.2019)^2$

$K_{n}=1.44 MeV\;.$

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...