Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

A doubly ionized lithium atom is hydrogen like atomic number $Z=3$ . Find the wavelength of radiation required to excite electron in $\;Li^{+2}\;$ from first to third Bohr orbit . Given the ionization energy of hydrogen atom as $\;13.6 eV\;.\;$

$(a)\;226.42 A^{0}\qquad(b)\;192.62 A^{0}\qquad(c)\;286.38 A^{0}\qquad(d)\;113.74 A^{0}$

Can you answer this question?

1 Answer

0 votes
Answer : (d) $\;113.74 A^{0}$
Explanation :
The energy of $\;n^{th}\;$ orbit of a hydrogen like atom is $\;\varepsilon=-\large\frac{13.6 Z^2}{n^2}$
Thus for $\;Li^{+2}\;$ atom as Z=3 , the electroenergies for first and third Bohr orbits are :
For $\qquad n=1 \;, \varepsilon_{1}=-\large\frac{13.6\times3^2}{1^2} eV$
For $\quad \; n=3 \; , \varepsilon_{3}=-\large\frac{13.6 \times3^2}{3^2}eV$
$=-13.6 eV$
Thus energy required to transformed an electron from $\;\varepsilon_{1}\;$ level to $\;\varepsilon_{3}\;$ level is
$=13.6-(-122.4)=108.8 eV$
The radiation needed to cause this transition should have photons of this energy
$h \nu=108.8 eV$
The wavelength of this radiation is
$\large\frac{hc}{\lambda}=108.8 eV$
or $\quad \lambda=\large\frac{hc}{108.8 eV}=\large\frac{(6.63 \times10^{-34})\times(3 \times 10^{8})}{108.8 \times 1.6\times 10^{-19}} m=113.74 A^{0}\;.$
answered Feb 26, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App