Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

A particle of charge equal to that of an electron e , and mass 208 times the mass of electron (called $\;\mu-\;$ meson ) moves in a circular orbit around a nucleus of charge +3e . (Take the mass of nucleus to be infinite ) . Then radius of $n^{th}\;$ Bohr orbit is

$(a)\;\large\frac{\varepsilon_{0} n^2 h^2}{2 \pi m_{e} e^2}\qquad(b)\;\large\frac{\varepsilon_{0} n^2 h^2}{4 \pi m_{e}e^2} \qquad(c)\;\large\frac{\varepsilon_{0} n^2 h^2}{8 \pi m_{e}e^2} \qquad(d)\;\large\frac{\varepsilon_{0} n^2 h^2}{624 \pi m_{e}e^2} $

Can you answer this question?

1 Answer

0 votes
Answer : $\;\large\frac{\varepsilon_{0} n^2 h^2}{624 \pi m_{e}e^2} $
Explanation :
We have radius of $\;n^{th}\;$ orbit given by
$r_{n}=\large\frac{n^2 h^2 \varepsilon_{0}}{\pi m e^2 z}$
$K=\large\frac{1}{4 \pi \varepsilon_{0}}\;,Z=3 \;,$ & m=208 m_{e}
We get
$r_{n}=\large\frac{\varepsilon_{0} n^2 h^2}{624 \pi m_{e} e^{2}}\;.$
answered Feb 26, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App