Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

A particle of charge equal to that of an electron e , and mass 208 times the mass of electron (called $\;\mu-\;$ meson ) moves in a circular orbit around a nucleus of charge +3e . (Take the mass of nucleus to be infinite ) . Then radius of $n^{th}\;$ Bohr orbit is . Find wavelength of radiation emitted when $\;mu\;$- meson jumps from third orbit to first orbit

$(a)\;0.692 A^{0}\qquad(b)\;0.548 A^{0}\qquad(c)\;0.312 A^{0}\qquad(d)\;0.212 A^{0}$

Can you answer this question?

1 Answer

0 votes
Answer : (b) $\;0.548 A^{0}$
Explanation :
The energy for $\;n^{th}\;$ orbit is given by
$\varepsilon_{n}=-\large\frac{m K^2 Z^2 e^4}{2 n^2 h^2}$
Substituting $\;m=208e_{e}\;, Z=3 \;, K=\large\frac{1}{4 \pi \varepsilon_{0}}$
and $\;\hbar=\large\frac{h}{2 \pi}\;,$ We get
$\varepsilon_{n}=-\large\frac{234 m_{e} e^4}{\varepsilon_{0}^{2} n^2 h^2 } =-1872 \;(\large\frac{M_{e} e^{4}}{8 \varepsilon_{0}^{2} h^3 c})\;\large\frac{h c}{n^2}$
$=-\large\frac{1872R h c}{n^2}$
Where $R=\large\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^3 c}\;$ is Rydberg const.
where $\;mu\;$-meson jumps from third orbit to first orbit , difference in energy is radiated as a photon of frequency $\; \nu\;$is given by
$h \nu=\varepsilon_{3}-\varepsilon_{1}$
As $\;\nu=\large\frac{c}{\lambda}\;$ we have $\;\large\frac{hc}{\lambda}=\varepsilon_{3}-\varepsilon_{1}$
$=1872 Rhc \;[\large\frac{1}{1^2}-\large\frac{1}{3^2}]$
or $\; \large\frac{1}{\lambda}=1872R\;(1-\large\frac{1}{9}) $
or $\; \lambda=\large\frac{9}{1872 \times 8 \times R}=\large\frac{9}{1872 \times8 \times(1.097 \times10^{7})}=0.5478 \times10^{-10} m$
$=0.5478 A^{0}\;.$
answered Feb 26, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App