Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

Find the sum upto $n$ terms of the G.P. $\sqrt 7,\sqrt {21},3\sqrt 7,.......$

$\begin{array}{1 1}\sqrt 7.(\sqrt 3^n-1)(\sqrt 3+1) \\ \frac{\sqrt 7}{2}.(\sqrt 3^n-1)(\sqrt 3-1) \\\frac{\sqrt 7}{2}.(3^n-1) \\ \frac{\sqrt 7}{2}.(\sqrt 3^n-1)(\sqrt 3+1) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Sum of $n$ terms of a G.P.=$S_n=a.\large\frac{r^n-1}{r-1}$ where $a=$first term and $r=$ common ratio.
Given sequence is $\sqrt 7,\sqrt {21},3\sqrt 7........$
In this G.P. first term $=a=\sqrt 7$ and
common ratio$=\large\frac{\sqrt {21}}{\sqrt 7}=\frac{\sqrt 3\times\sqrt 7}{\sqrt 7}$$=\sqrt 3$
We know that the sum of $n$ terms of a G.P.$=S_n=a.\large\frac{r^n-1}{r-1}$
$\therefore$ Sum of $n$ terms of the given sequence $=\sqrt 7.\large\frac{\sqrt 3^n-1}{\sqrt 3-1}$
Rationalising the denominator we get
$S_n=\sqrt 7.\large\frac{\sqrt 3^n-1}{\sqrt 3-1}.\frac{\sqrt 3+1}{\sqrt 3+1}=\frac{\sqrt 7}{2}.$$(\sqrt 3^n-1)(\sqrt 3+1)$
answered Feb 26, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App