Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XI  >>  Math  >>  Sequences and Series
Answer
Comment
Share
Q)

Find the sum up to $n$ terms of the G.P. $1,-a,a^2,-a^3.........$

$\begin{array}{1 1}\large\frac{1-(A)^n}{1-a} \\ \large\frac{1-(-a)^n}{1+a} \\\large\frac{1-(-a)^n}{1-a} \\ \large\frac{1+(-a)^n}{1+a} \\ \large\frac{1+(-a)^n}{1+a} \end{array} $

1 Answer

Comment
A)
Toolbox:
  • Sum of $n$ terms of a G.P=$S_n=a.\large\frac{1-r^n}{1-r}$ where first term=$a$ and common ratio=$r$
Given G.P is $1,-a,a^2,-a^3........$
In this G.P first term$=a=1$ and common ratio $=r=-a$
We know that sum of $n$ terms of a G.P.$=a.\large\frac{1-r^n}{1-r}$
$\therefore \:S_n=1.\large\frac{1-(-a)^n}{1-r}$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...