Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

Find the sum up to $n$ terms of the G.P. $1,-a,a^2,-a^3.........$

$\begin{array}{1 1}\large\frac{1-(A)^n}{1-a} \\ \large\frac{1-(-a)^n}{1+a} \\\large\frac{1-(-a)^n}{1-a} \\ \large\frac{1+(-a)^n}{1+a} \\ \large\frac{1+(-a)^n}{1+a} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Sum of $n$ terms of a G.P=$S_n=a.\large\frac{1-r^n}{1-r}$ where first term=$a$ and common ratio=$r$
Given G.P is $1,-a,a^2,-a^3........$
In this G.P first term$=a=1$ and common ratio $=r=-a$
We know that sum of $n$ terms of a G.P.$=a.\large\frac{1-r^n}{1-r}$
$\therefore \:S_n=1.\large\frac{1-(-a)^n}{1-r}$
answered Feb 26, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App