Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

Calculate wavelength of emitted characteristic X-ray from a tungsten (Z=74) target when an electron drops from an M shell to a vacancy in K shell

$(a)\;1.8 \times 10^{-12} m\qquad(b)\;1.8 \times 10^{-13} m\qquad(c)\;1.8 \times 10^{-11} m\qquad(d)\;1.8 \times 10^{-9} m$

Can you answer this question?

1 Answer

0 votes
Answer : (c ) $\;1.8 \times 10^{-11} m$
Explanation :
Tungston is multi electron atom. Due to shielding of nuclear charge by -ve charge of inner core electrons each electron is subjected to an effective nuclear charge Z H which is different for different shells.
Thus energy of an electron in $\;n^{th}\;$ level of a multi electron atom is given by
$\varepsilon_{n}=-\large\frac{13.6 Z^2 H}{n^2} eV$
For an electron in K shell (n=1) , ZH=(Z-1)
Thus energy of electron in K- shell is :
$\varepsilon_{K}=-\large\frac{(74-1)^2 \times13.6}{1^2}=-72500eV$
For an electron in M shell (n=3) the nucleus is shielded by one electron of n=1 state and eight electrons of n=2 state , a total of nine electrons ,So that ZH=Z-9 . Thus energy of an electron in M shell is :
The emitted X-ray photon has an energy given by
$h \nu=\varepsilon_{M}-\varepsilon_{K}=-6380 eV-(-72500eV)$
or $\;\large\frac{hc}{\lambda}=66100 \times 1.6 \times10^{-19} J$
$\lambda=\large\frac{hc}{66100\times1.6\times10^{-19}} m$
$=\large\frac{(6.63\times 10^{-34})\times(3 \times 10^{8})}{66100\times1.6\times10^{-19}}\;m$
$=0.0188\times10^{-9} m=1.8\times10^{-11} m\;.$
answered Feb 26, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App