Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Atoms
0 votes

The mean lives of radioactive substance are 1620 year and 405 year for $\;\alpha\;$ emission and $\;\beta\;$ emission respectively . Find time during which $\;{\large\frac{3}{4}}^{th}\;$ of a sample will decay if it is decaying both by $\;\alpha\;$ emission and $\;\beta\;$ emission simultaneously .

$(a)\;469 years\qquad(b)\;512 years \qquad(c)\;449 years \qquad(d)\;412 years$

Can you answer this question?

1 Answer

0 votes
Answer : 449 years
The decay constant $\;\lambda\;$ is reciprocal of mean life
$\Rightarrow \lambda_{\alpha}=\large\frac{1}{1620}\;$ per year and $ \lambda_{\Beta }=\large\frac{1}{405}\;$ per year.
Total decay constant , $\; \lambda=\lambda_{\alpha}+\lambda_{\beta}\; =\large\frac{1}{1620}+\large\frac{1}{405}=\large\frac{1}{324}$ per year
When $\;(\large\frac{3}{4})$$^{th}\;$ part of sample has disintegrated $\;N=\large\frac{N_{0}}{4}$
$\Rightarrow \large\frac{N_{0}}{4}$$=N_{0}e^{-\lambda t}$$ \quad or \quad e^{\lambda t}=4 \rightarrow \lambda t =ln 4$
$\Rightarrow t=\large\frac{1}{\lambda}$$\;\ln 2^2 = \large\frac{2}{\lambda}$$\;\ln 2=2 \times 324 \times 0.693 = 449$ years.
answered Feb 27, 2014 by yamini.v
edited Aug 12, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App