Ask Questions, Get Answers

Home  >>  JEEMAIN and NEET  >>  Physics  >>  Class12  >>  Atoms

The mean lives of radioactive substance are 1620 year and 405 year for $\;\alpha\;$ emission and $\;\beta\;$ emission respectively . Find time during which $\;{\large\frac{3}{4}}^{th}\;$ of a sample will decay if it is decaying both by $\;\alpha\;$ emission and $\;\beta\;$ emission simultaneously .

$(a)\;469 years\qquad(b)\;512 years \qquad(c)\;449 years \qquad(d)\;412 years$

Download clay6 mobile app

1 Answer

Answer : 449 years
The decay constant $\;\lambda\;$ is reciprocal of mean life
$\Rightarrow \lambda_{\alpha}=\large\frac{1}{1620}\;$ per year and $ \lambda_{\Beta }=\large\frac{1}{405}\;$ per year.
Total decay constant , $\; \lambda=\lambda_{\alpha}+\lambda_{\beta}\; =\large\frac{1}{1620}+\large\frac{1}{405}=\large\frac{1}{324}$ per year
When $\;(\large\frac{3}{4})$$^{th}\;$ part of sample has disintegrated $\;N=\large\frac{N_{0}}{4}$
$\Rightarrow \large\frac{N_{0}}{4}$$=N_{0}e^{-\lambda t}$$ \quad or \quad e^{\lambda t}=4 \rightarrow \lambda t =ln 4$
$\Rightarrow t=\large\frac{1}{\lambda}$$\;\ln 2^2 = \large\frac{2}{\lambda}$$\;\ln 2=2 \times 324 \times 0.693 = 449$ years.
answered Feb 27, 2014 by yamini.v
edited Aug 12, 2014 by balaji.thirumalai

Related questions