logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Show that the matrix \( A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \) is a skew - symmetric matrix.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • A square matrix A=[a$_{ij}$] is said to be skew symmetric if A'=-A that is $[a_{ij}]= -[a_{ji}]$ for all possible value of i and j.
  • In a skew symmetric matrix all elements along the principal diagonal are zero.
Step1:
Given:
A = $\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$
We know that A'=-A.
$\Rightarrow a_{ij}=-a_{ij}$
Step2:
Put i=j,we have
$a_{ii}=-a_{ii}$
$\Rightarrow 2a_{ii}=0$
$a_{ii}=0.$
Hence the diagonal elements of a given matrix are zero.
$\Rightarrow$ matrix A-Skew symmetric matrix.
answered Apr 11, 2013 by sharmaaparna1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...