logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Differentiate w.r.t. \(x\) the function in \((5x)^{\large 3 \cos 2x} \)

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\large\frac{d}{dx}$$(\log y)=\large\frac{1}{y}$
  • $\large\frac{d}{dx}$$(\cos x)=-\sin x$
Step 1:
Let $y=(5x)^{\large 3\cos 2x}$
Taking $\log$ on both sides
$\log y=3\cos 2x\log 5x$
Step 2:
Differentiating with respect to $x$
$\large\frac{1}{y}\frac{dy}{dx}$$=-3.2\sin 2x\log 5x+3\cos 2x.\large\frac{1}{x}$
$\qquad=3\begin{bmatrix}\large\frac{\cos 2x}{x}\normalsize-2\sin 2x\log 5x\end{bmatrix}$
$\large\frac{dy}{dx}=$$y.3\begin{bmatrix}\large\frac{\cos 2x}{x}\normalsize-2\sin 2x\log 5x\end{bmatrix}$
$\quad\;=(5x)^{\large 3\cos 2x}.3\begin{bmatrix}\large\frac{\cos 2x}{x}\normalsize-2\sin 2x\log 5x\end{bmatrix}$
$\quad\;=(5x)^{\large 3\cos 2x}\begin{bmatrix}\large\frac{3\cos 2x}{x}\normalsize-6\sin 2x\log 5x\end{bmatrix}$
answered May 14, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...