Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Differentiate w.r.t. \(x\) the function in \((5x)^{\large 3 \cos 2x} \)

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(\log y)=\large\frac{1}{y}$
  • $\large\frac{d}{dx}$$(\cos x)=-\sin x$
Step 1:
Let $y=(5x)^{\large 3\cos 2x}$
Taking $\log$ on both sides
$\log y=3\cos 2x\log 5x$
Step 2:
Differentiating with respect to $x$
$\large\frac{1}{y}\frac{dy}{dx}$$=-3.2\sin 2x\log 5x+3\cos 2x.\large\frac{1}{x}$
$\qquad=3\begin{bmatrix}\large\frac{\cos 2x}{x}\normalsize-2\sin 2x\log 5x\end{bmatrix}$
$\large\frac{dy}{dx}=$$y.3\begin{bmatrix}\large\frac{\cos 2x}{x}\normalsize-2\sin 2x\log 5x\end{bmatrix}$
$\quad\;=(5x)^{\large 3\cos 2x}.3\begin{bmatrix}\large\frac{\cos 2x}{x}\normalsize-2\sin 2x\log 5x\end{bmatrix}$
$\quad\;=(5x)^{\large 3\cos 2x}\begin{bmatrix}\large\frac{3\cos 2x}{x}\normalsize-6\sin 2x\log 5x\end{bmatrix}$
answered May 14, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App