$\begin {array} {1 1} (a)\;2.1 \times 10^{-6}i\: T & \quad (b)\;0.21 \times 10^{-8}i\: T \\ (c)\;2.1 \times 10^{-8}k\: T & \quad (d)\;0.21 \times 10^{-8}j\: T \end {array}$

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

the magnitude of $B$ is

$B=\large\frac{E}{c}$$ = \large\frac{6.3}{3 \times 10^8}$$ = 2.1 \times 10^{-8} T$

To find the direction, we note that $E$ is along $y$ - direction and the wave propagates along $x$ - axis.

Therefore, $B$ should be in a direction perpendicular to both $x$ - and $y$ - axes.

Using vector algebra,$ E\times B$ should be along $x$ - direction.

Since, $(+j) \times (+k) = i$ , so, $B$ is along +k or the $z$ - direction.

Ans : (c)

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...