Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following $\int \large \frac{( x)}{\sqrt x+1}$$dx \quad(Hint:Put\;\sqrt x=z)$

$\begin{array}{1 1} (A) \; 2 \bigg[\large\frac{x \sqrt x}{3}-\frac{x}{2}-\sqrt x-log |\sqrt x+1|\bigg]+c \\ (B) \;2 \bigg[\large\frac{x \sqrt x}{3}+\frac{x}{2}+\sqrt x-log |\sqrt x+1|\bigg]+c \\ (C) \; 2 \bigg[\large\frac{x \sqrt x}{3}-\frac{x}{2}+\sqrt x+log |\sqrt x+1|\bigg]+c \\ (D)\;2 \bigg[\large\frac{x \sqrt x}{3}-\frac{x}{2}+\sqrt x-log |\sqrt x+1|\bigg]+c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $a^3+b^3=(a+b)(a^2-ab+b^2)$
  • $\int \large\frac{dx}{(x+a)}$=$ log |x+a|+c$
  • $\int x^n dx=\large\frac{x^{n+1}}{n+1}+c$
Step 1:
Let $I=\large\int\frac{ x}{\sqrt x+1} dx$
Let $\sqrt x=z => x=z^2$
differentiating with respect to z
$\large \frac{1}{2 \sqrt x}dx =dz$
$dx=2 \sqrt x dz$
Substituting this in I we get
$I=\Large \int \frac{z^2.(2zdz)}{z+1}$
$=2 \Large\int \frac{z^3dz}{z+1}$
Add and subtract 1 in the numerator
$I=2 \int \Large\frac{z^3+1-1}{z+1}$ $ dz$
Similarly, $(z^3+1)=(z+1)(z^2-z+1)$
Hence $I=2 \int \bigg[\large\frac{(z+1)(z^2-z+1)}{z+1} \bigg]-\bigg(\frac{1}{z+1}\bigg) dz$
$= 2 \bigg \{ \int (z^2-z+1)dz -\int \large\frac{1}{z+1}\bigg\} dz$
Step 2:
On integrating we get
$I=2 \bigg \{ \bigg[ \Large\frac{z^3}{3}-\frac{z^2}{2}+z\bigg]$-$log |z+1| \bigg\}+c$
substituting for z we get
$ I= 2 \bigg\{\bigg[\Large\frac{\sqrt x)^3}{3}-\frac{(\sqrt x)^2}{2}+\sqrt x\bigg]$-$log |\sqrt x+1|\bigg\}+c$
$ I= 2 \bigg[\Large\frac{x \sqrt x}{3}-\frac{x}{2}$+$\sqrt x-log |\sqrt x+1|\bigg]+c$
answered Apr 11, 2013 by meena.p
edited Apr 11, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App