$\large\int\frac{dx}{\sqrt {16-9x^2}}$
$\large\int\frac{dx}{\sqrt {16-9x^2}}=\sqrt {9(\frac{16}{9}-x^2)}$
$=3 \sqrt {(4/3)^2-x^2}$
This is of the form $\large\int\frac{dx}{\sqrt {a^2-x^2}}=\sin ^{-1} (\frac{x}{a})+c$
Here $a=\frac{4}{3}\; and\; x=x$
Hence $\large\frac{1}{3} \int \frac{dx}{(\frac{4}{3})^2-x^2}$ on integrating gives
$=\large\frac{1}{3} \int \frac{dx}{\sqrt {(\frac{4}{3})^2-x^2}}$
$=\large\frac{1}{3} \sin ^{-1} \bigg(\frac{x}{\frac{4}{3}}\bigg)+c$
$=\large\frac{1}{3} \sin ^{-1} \bigg(\frac{3x}{4}\bigg)+c$