Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following $\int\frac{3x-1}{\sqrt{x^2+9}}dx$

Can you answer this question?

1 Answer

0 votes
  • If a rational expression is of the form $\large\frac{px+q}{\sqrt {ax^2+bx+c}}$ then it can be resolved as $A\large\frac{d}{dx}$$(ax^2+bx+c)+B$
  • If $f(x)$ is substituted by $f(t),$ then $f;(x)dx=f'(t)dt$, hence $\int f(x)dx=\int f'(t)dt$
Step 1:
Let $I=\int \large\frac{3x-1}{\sqrt {x^2-9}}dx$
Let $3x-1=A \large\frac{d}{dx} $$(x^2-9)+B$
To evaluate A and B, put x=0
Next put $x=1$
$3(1)-1=A( 2 \times 1)+B$
But $B=-1$
Therefore $2=2A-1$
$2A=3 =>A=\large\frac{3}{2}$
Therefore $A=\large\frac{3}{2}$ $;and \;B=-1$
Hence $\int \large\frac{3x-1}{\sqrt {x^2-9}}dx=\int \large\frac{\frac{3}{2}(2x)}{\sqrt {x^2-9}}dx+ \int \frac{(-1)dx}{\sqrt {x^2-9}}$
$= 3 \int \large\frac{xdx}{\sqrt {x^2-9}}-\int\frac{dx}{\sqrt {x^2-9}}$
Step 2:
consider $I_1=3 \int \large\frac{xdx}{\sqrt {x^2-9}}$
Put $x^2-9=t$
differentiating with respect to x we get
substituting for $x^2-9$ and dx we get
$I_1=3 \int \large\frac{dt/2}{\sqrt t}=\frac{3}{2} \int \frac{dt}{\sqrt t}$
On integrating we get
$I_1=3 \bigg[\large\frac{1}{2}\bigg(\frac{t^{-1/2+1}}{-1/2+1}\bigg)\bigg]=+ \sqrt t$
Substituting for t we get
$I_1=3 \sqrt {x^2-9}$
Step 3:
Next let us consider $I_2=\int \large \frac{dx}{\sqrt {x^2-9}}$
This is of the form $\int\large\frac{dx}{\sqrt{x^2-a^2}}$$=\log|(x-a)+\sqrt {x^2-a^2}|+c$
Therefore $I_2=\int \large\frac{dx}{\sqrt {x^2-9}}$$=\log |(x)+\sqrt {x^2-9}|+c$
Step 4:
Now $I=I_1+I_2$
$I=3 \sqrt {x^2-9} -\log |(x)+\sqrt {x^2-9}|+c$
answered Apr 19, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App