Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following $\int\sqrt {5-2x+x^2}dx$

$\begin{array}{1 1} (A)\; \large\frac{x+1}{6} \sqrt {5-2x-x^2}+ 3 \sin ^{-1}\bigg(\frac{x+1}{\sqrt 6}\bigg)+c \\(B)\;\large\frac{x+1}{2} \sqrt {5-2x-x^2}+ 6 \sin ^{-1}\bigg(\frac{x+1}{\sqrt 6}\bigg)+c \\ (C)\;\large\frac{x+1}{2} \sqrt {5-2x-x^2}- 3 \sin ^{-1}\bigg(\frac{x+1}{\sqrt 6}\bigg)+c \\ (D)\;\large\frac{x+1}{2} \sqrt {5-2x-x^2}+ 3 \sin ^{-1}\bigg(\frac{x+1}{\sqrt 6}\bigg)+c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\int \sqrt {a^2-x^2}dx= \large\frac{x}{2} \sqrt {a^2-x^2}+ \frac{a^2}{2} \sin ^{-1} \bigg(\frac{x}{a}\bigg)+c$
Let I =$\int\sqrt {5-2x+x^2}dx$
consider $(5-2x+x^2)$
By completing the squares, this can be written as
$=-\bigg[(x+1)^2-(\sqrt 6)^2\bigg]=(\sqrt 6)^2-(x+1)^2$
Hence $I=\sqrt {(\sqrt 6)^2-(x+1)^2}dx$
This is of the form $\sqrt {a^2-x^2}dx$
$=\large\frac{x}{2} \sqrt {a^2-x^2}+\frac{a^2}{2} \sin ^{-1}(\frac{x}{a})+c$
Here $x=(x+1)\; and\; a =\sqrt 6$
Hence on integrating $\int \sqrt {5-2x-x^2}dx$
$=\large\frac{x+1}{2} \sqrt {5-2x-x^2}+\frac {(\sqrt 6)^2}{2} \sin ^{-1}\bigg( \frac{x+1}{\sqrt 6}\bigg)+c$
$=\large\frac{x+1}{2} \sqrt {5-2x-x^2}+ 3 \sin ^{-1}\bigg(\frac{x+1}{\sqrt 6}\bigg)+c$
answered Apr 16, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App