$\begin {array} {1 1}(a)\;Change\; in \;Volume\; of\; gas\; for\; each\; 1^{\large\circ} \;rise\; in\; temperature\\(b)\;3.661\times10^{-3}C^{-1}\\(c)\;\large\frac{V-V_{\large\circ}}{tV_{\large\circ}}\\(d)\;Either \;of\; these \end {array}$

Volume coefficient $\propto$ is given as

$V_{\large\circ} = K\times273.15$

$V_t = K\times(t+273.15)$

$\therefore \large\frac{V_t}{V_{\large\circ}} = \large\frac{t+273.15}{273.15}$

$=[1+\large\frac{t}{273.15}]$

$Or\; V_t = V_{\large\circ} [1+\alpha t]$

Where $\alpha = \large\frac{1}{273} = 3.66\times10^{-3}$

Hence answer is (b)

Ask Question

Tag:MathPhyChemBioOther

Take Test

...