logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Sequences and Series
0 votes

Show that the ratio of the first $n$ terms of a G.P. to the sum of the terms from $(n+1)^{th}$ to $(2n)^{th}$ term is $1:r^n$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Sum of first $n$ terms of a G.P$=a.\large\frac{1-r^n}{1-r}$
Step 1
Given that the G.P. has $2n$ terms.
Let the first $2n$ terms of the G.P be
$(a+ar+ar^2+......ar^{n-1})+(ar^n+ar^{n+1}+....ar^{2n-1})$
Let the sum of first $n$ terms be $S_n$,
Sum of first $2n$ terms be $S_{2n}$ and
Sum of the terms from $(n+1)^{th}$ to $(2n)^{th}$ term be $S$
We know that the sum of first $n$ terms of a G.P$=S_n=a.\large\frac{1-r^n}{1-r}$
$\Rightarrow\:$The sum of first $2n$ terms of the G.P$=S_{2n}=a.\large\frac{1-r^{2n}}{1-r}$
$\therefore\:S_{2n}=(a+ar+ar^2+......ar^{n-1})+(ar^n+ar^{n+1}+....ar^{2n-1})$
$\Rightarrow\:S_{2n}=S_n+S$
$\Rightarrow\:a.\large\frac{1-a^{2n}}{1-r}$$=a.\large\frac{1-r^n}{1-r}$$+S$
$\Rightarrow\:$Sum of the terms from $(n+1)^{th}$ to $(2n)^{th}$ term $=S=$
$(a.r^{n}+a.r^{n+1}+........a.r^{2n-1})=S=a.\large\frac{1-a^{2n}}{1-r}$$-a.\large\frac{1-r^n}{1-r}$
Taking $a\:\;and\:\:(1-r)$ common we get
$\Rightarrow\:S=\large\frac{a}{1-r}$$.(1-r^{2n}-1+r^n)$
$\Rightarrow\:S=\large\frac{a}{1-r}$$.(r^n-r^{2n})$
Taking $r^n$ common we get
$\Rightarrow\:S=\large\frac{ar^n}{1-r}$$.(1-r^{n})$
Step 2
The ratio of the first $n$ terms of a G.P. to the sum of the terms from $(n+1)^{th}$ to $(2n)^{th}$ term =
$S_n\: : \:S=a.\large\frac{1-r^n}{1-r}\: :\: \frac{a.r^n}{1-r}.$$(1-r^n)$
Cancelling the terms $a,\:\:(1-r^n)\:\:and\:\:(1-r)$ on both the sides we get
$\Rightarrow\:S_n\: :\:S=1\: :\:r^n$
Hence Proved.
answered Mar 2, 2014 by rvidyagovindarajan_1
edited Mar 3, 2014 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...