Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the following $\int\frac{\sqrt x}{\sqrt{a^3-x^3}}dx$

Can you answer this question?

1 Answer

0 votes
  • $\large\int \frac{dx}{\sqrt {a^2-x^2}}=\sin ^{-1}(\frac{x}{a})+c$
  • If $f(x)$ is substituted by $f(t),$ then $f'(x) dx=f'(t)dx$
  • Hence $\int f(x) dx=\int f(t)dt$
$\large\int\frac{\sqrt x}{\sqrt{a^3-x^3}}dx$
This can be written as $\large\int \frac{\sqrt x}{\sqrt {(a^{3/2})^2-(x^{3/2})^2}}dx$
Put $x^{3/2}=t$. on differentiating with respect to t
we get $\frac{3}{2} x^{1/2} dx=dt =>dx=\frac{2}{3 \sqrt x}dt$
On substituting this we get
Therefore $I=\Large\int \frac{\frac{2}{3 \sqrt x} \times \sqrt x.dt}{\sqrt { (a^{3/2})^2-t^2}}$
$=\large\frac{2}{3} \int \frac{dt}{\sqrt {(a^{3/2})^2-t^2}}$
This is of the form $\large\frac{dx}{\sqrt {a^2-x^2}}$
Here $x=t\;and \;a=a^{3/2}$
Therefore on integrating I we get
$I=\large\frac{2}{3} \sin ^{-1} \bigg(\frac{a^{3/2}}{t}\bigg)+c$
Substituting for t we get,
$I=\large\frac{2}{3} \sin ^{-1} \bigg(\frac{a^{3/2}}{x^{3/2}}\bigg)+c$
answered Apr 16, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App